For both compounds, data collection: EXPOSE (Stoe \& Cie, 1993); cell refinement: $C E L L$ (Stoe \& Cie, 1993); data reduction: CONVERT (Stoe \& Cie, 1993); program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: SHELXL93; molecular graphics: ORTEPII (Johnson, 1976) in NRCVAX (Larson et al., 1986); software used to prepare material for publication: SHELXL93.

The authors thank Mr Latal for synthesis of the ligand and Professor W. Koppenol for helpful discussion.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates, complete geometry, distances from the metal centre to the ligand planes and angles between the ligand planes have been deposited with the IUCr (Reference: SK1022). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Battaglia, L. P., Corradi, A. B., Nardelli, M. \& Tani, M. E. V. (1976). J. Chem. Soc. Dalton Trans. pp. 143-146.

Bonamartini, A. C., Gasparri, G. F., Belicchi, M. F. \& Nardelli, M. (1987). Acta Cryst. C43, 407-413.

Bowmaker, G. A., Pakawatchai, C., Skelton, B. W., Thavornyutikarn, P., Wattanakanjana, Y. \& White, A. H. (1994). Ausl. J. Chem. 47, 15-24.
Constable, E. C. \& Raithby, P. R. (1987). J. Chem. Soc. Dalton Trans. pp. 2281-2283.
Geier, G., Giusti, G. \& Kleemann, M. (1995). Unpublished results.
Geier, G., Primo, L. \& Mordasini, T. (1995). Unpublished results.
Gutbier, R. (1900). Ber. Dtsch Chem. Ges. 33, 3359.
Hunt, G. W., Terry, N. W. III \& Amma, E. L. (1979). Acta Cryst. B35, 1235-1236.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, R. A. \& Katritzky, A. R. (1958). J. Chem. Soc. pp. 3610-3613.
Kokkou, S. C., Fortier, S., Rentzeperis, P. J. \& Karagiannidis, P. (1983). Acta Cryst. C39, 178-180.

Kokkou, S. C., Schramm, S. \& Karagiannidis, P. (1985). Acta Cryst. C41, 1040-1043.
Larson, A. C., Lee, F. L., Le Page, Y., Webster, M., Charland, J.-P. \& Gabe, E. J. (1986). NRCVAX. Crystal Structure System with Interactive Version of ORTEPII. NRC, Ottawa, Canada.
Okaya, Y. \& Knobler, C. B. (1964). Acta Cryst. 17, 928-930.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1993). Scanner Stoe IPDS Diffractometer Software. Version 1.08. Stoe \& Cie, Darmstadt, Germany.
Truter, M. R. \& Rutherford, K. W. (1962). J. Chem. Soc. pp. 17481756.

Udupa, M. R. \& Krebs, B. (1973). Inorg. Chim. Acta, 7, 271-276.
Weininger, M. S., Hunt, G. W. \& Amma, E. L. (1972). J. Chem. Soc. Chem. Commun. pp. 1140-1141.

Acta Cryst. (1996). C52, 1917-1919

Diiodobis(nicotinamide- N^{1}-acetate- O)zinc(II)

Vladimír Zeleñák, ${ }^{a}$ Katarína Györyová, ${ }^{a}$ Ivana Císaǩová a and Josef Loub ${ }^{b}$
${ }^{a}$ Department of Inorganic Chemistry, P. J. Šafárik University, Moyzesova 11, 04154 Košice, Slovakia, and ${ }^{\text {b Department }}$ of Inorganic Chemistry, Charles University, Hlavova 2030, Praha 2, Czech Republic. E-mail: zelenak@kosice.upjs.sk

(Received 22 February 1996; accepted 28 March 1996)

Abstract

In the title compound, $\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\right]$, the Zn atom, which lies on a twofold axis, exists in a slightly distorted tetrahedral geometry involving two zwitterionic nicotin-amide- N^{1}-acetate substituents $[\mathrm{Zn}-\mathrm{O} 12.008$ (2) \AA] and two iodide ligands [Zn-I 2.5848 (3) A]. Molecules of the complex are connected by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\mathrm{N} \cdots \mathrm{O}$ distances of 2.965 (3) and 3.133 (3) Å.

Comment

As part of a long-term project involving structural, spectroscopic, thermal and biological activity studies of zinc(II) carboxylates with bioactive N -donor ligands, we have been interested in the product of the reaction between $\operatorname{zinc}($ II) iodoacetate and nicotinamide, i.e. di-iodobis(nicotinamide- N^{1}-acetate)zinc(II), (I). We have previously reported the mechanism of the reaction (Zeleňák, Györyová \& Císařová, 1995).

The crystal structure of (I) consists of discrete monomeric units (Fig. 1) with the four-coordinate Zn atom lying on the crystallographic twofold axis. The distorted coordination tetrahedron is formed by two I atoms and two O atoms from the zwitterionic nicotinamide- N^{1} acetate ligands. The complexes are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 3), causing the two N-H distances to be different.
The zwitterionic nicotinamide- N^{l}-acetate ligands are unidentate with the carboxylate Ol atom bonded to Zn

Fig. 1. View of $\left[\mathrm{ZnI}_{2}\left(\mathrm{CONH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}\right]$. Displacement ellipsoids are plotted at the 50% probability level.
[$\mathrm{Zn}-\mathrm{O} 12.008(2) \AA$ A and the carboxylate O 2 atom involved in only a weak interaction $[\mathrm{Zn} \cdots \mathrm{O} 2.878$ (2) \AA]. The $\mathrm{C} 1 — \mathrm{O} 1$ distance is slightly longer than the $\mathrm{C} 1-\mathrm{O} 2$ distance because of the greater double-bond character in the latter. The N1-C2 bond is synperiplanar to the $\mathrm{C} 1-\mathrm{O} 1$ bond and antiperiplanar to the $\mathrm{C} 1-\mathrm{O} 2$ bond [$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$ are 5.3 (3) and $-176.9(2)^{\circ}$, respectively].
The $\mathrm{Zn}-\mathrm{Ol}$ bond length is similar to that found in the analogous bromine complex, $\left[\mathrm{ZnBr}_{2}\left(\mathrm{CONH}_{2}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}$] [2.005 (2) Å; Zeleňák, Györyová \& Císařová, 1995), shorter than that found in $\left[\mathrm{ZnCl}_{2}-\right.$ $\left(\mathrm{CONH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}$] [2.014(1) \AA; Zeleňák, Györyová, Císařová \& Loub, 1996) and longer than those found in another complex with a zwitterionic carboxylate ligand, namely, dichlorobis(pyridine betaine)zinc(II) [1.988 (3) and 1.964 (2) \AA; Chen \& Mak, 1991].
In the series of complexes of the type $\left[\mathrm{ZnX} \mathbf{X}_{2}\left(\mathrm{CONH}_{2}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}$], where $X=\mathrm{Cl}$ (Zeleňák, Györyová, Císařová \& Loub, 1996), Br (Zeleñák, Györyová \& Císařová, 1995) and I (the title compound), the Zn X bond distance increases from Cl to I [2.245 (1) for $\mathrm{Cl}, 2.381$ (1) for Br and 2.5848 (3) \AA for I], which is in good agreement with the increase in the covalent radius of the halogen atom. Comparison of the $X-\mathrm{Zn}-X^{\prime}$ and $\mathrm{Ol}-\mathrm{Zn}-\mathrm{Ol}^{\prime}$ angles shows two trends. Whereas the $X-\mathrm{Zn}-X^{\prime}$ angles decrease with an increase in the covalent radius of the halogen ligand [107.52 (3) for Cl , 105.9 (1) for Br and 104.29 (2) ${ }^{\circ}$ for I , the $\mathrm{Ol}-\mathrm{Zn}$ $\mathrm{O1}^{\prime}$ angles show the contrary trend $[106.44(8)$ for Cl , 107.8 (1) for Br and $109.24(9)^{\circ}$ for I$]$.

Experimental

The synthesis of the title compound was carried out by reaction of zinc(II) iodoacetate and nicotinamide (molar ratio 1:2) in water at 313 K . The reaction mixture was filtered and then allowed to evaporate slowly at room temperature. After several days, pale yellow crystals were isolated.

Crystal data

$\left[\mathrm{ZnI}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\right.$]
$M_{r}=679.50$

Monoclinic
C2/c
$a=14.0585$ (9) \AA
$b=7.6504$ (4) \AA
$c=18.6550(10) \AA$
$\beta=93.599(6)^{\circ}$
$V=2002.4(2) \AA^{3}$
$Z=4$
$D_{x}=2.254 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Cell parameters from 25 reflections
$\theta=18-19^{\circ}$
$\mu=4.352 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Hexagon
$0.46 \times 0.38 \times 0.35 \mathrm{~mm}$ Pale yellow

Data collection
CAD-4-MACHIII-PC
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
analytical (AGNOSTIC;
Templeton \& Templeton, 1978)
$T_{\text {min }}=0.210, \quad T_{\text {max }}=$ 0.314

4190 measured reflections
2179 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0208$
$w R\left(F^{2}\right)=0.0537$
$S=1.113$
2179 reflections
165 parameters
All H-atom parameters
refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0269 P)^{2}\right.$ $+2.666 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

2089 observed reflections

$$
\begin{gathered}
{[I>4 \sigma(I)]} \\
R_{\text {int }}=0.0257 \\
\theta_{\max }=26.97^{\circ} \\
h=-17 \rightarrow 17 \\
k=0 \rightarrow 9 \\
l=-23 \rightarrow 23
\end{gathered}
$$

3 standard reflections frequency: 60 min intensity decay: 1%
$\Delta \rho_{\text {max }}=0.630 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.851 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0053 (2)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{eq}}=$			$(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.
x	y	z	U_{eq}
$0.110842(11)$	$0.02424(2)$	$0.184401(8)$	$0.03125(9)$
0	$0.23157(5)$	$1 / 4$	$0.02342(11)$
$0.07358(12)$	$0.3835(2)$	$0.32160(9)$	$0.0269(3)$
$0.1140(2)$	$0.5363(3)$	$0.22642(10)$	$0.0386(4)$
$0.12293(14)$	$0.6505(2)$	$0.41525(10)$	$0.0239(4)$
$0.1048(2)$	$0.5192(3)$	$0.29097(13)$	$0.0236(4)$
$0.1299(2)$	$0.6788(3)$	$0.33743(12)$	$0.0277(5)$
$0.1904(2)$	$0.5543(3)$	$0.45152(12)$	$0.0229(4)$
$0.1876(2)$	$0.5271(3)$	$0.52449(12)$	$0.0224(4)$
$0.2694(2)$	$0.4224(3)$	$0.55921(13)$	$0.0264(4)$
$0.0452(2)$	$0.7006(3)$	$0.52204(13)$	$0.0307(5)$
$0.1136(2)$	$0.6005(3)$	$0.56022(12)$	$0.0263(5)$
$0.0514(2)$	$0.7234(3)$	$0.44947(14)$	$0.0290(5)$
$0.33721(13)$	$0.3877(3)$	$0.52403(11)$	$0.0436(5)$
$0.2631(2)$	$0.3747(3)$	$0.62698(12)$	$0.0364(5)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$1-\mathrm{Zn}$	$2.5848(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.380(3)$
$\mathrm{Zn}-\mathrm{Ol}$	$2.008(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.389(3)$
$\mathrm{O} 1-\mathrm{Cl}$	$1.276(3)$	$\mathrm{C} 4-\mathrm{C} 8$	$1.514(3)$

$\mathrm{O} 2-\mathrm{Cl}$	1.226 (3)	C8-03		1.220 (3)
$\mathrm{N} 1-\mathrm{C} 7$	1.346 (3)	C 8 - N 2		1.324 (3)
$\mathrm{N} 1-\mathrm{C} 3$	1.348 (3)	C6-C7		1.373 (4)
$\mathrm{N} 1-\mathrm{C} 2$	1.477 (3)	C6-C5		1.390 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.526 (3)			
$\mathrm{Ol}-\mathrm{Zn}-\mathrm{Ol}^{\text {i }}$	109.24 (9)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$		114.4 (2)
$\mathrm{Ol}-\mathrm{Zn}-\mathrm{l}$	111.68 (5)	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$		121.0 (2)
O1-Zn- $\mathrm{I}^{\text {i }}$	109.94 (5)	C3-C4-C5		118.7 (2)
$\mathrm{I}-\mathrm{Zn}-\mathrm{I}^{\text {i }}$	104.29 (2)	C3-C4-C8		115.7 (2)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Zn}$	110.52 (14)	C5-C4-C8		125.5 (2)
C7-N1-C3	120.7 (2)	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{N} 2$		123.7 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2$	120.2 (2)	O3-C8-C4		118.9 (2)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	119.0 (2)	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 4$		117.4 (2)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}$	125.9 (2)	C7-C6-C5		119.3 (2)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	115.9 (2)	C4-C5-C6		119.5 (2)
$\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$	118.1 (2)	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$		120.7 (2)
Symmetry code: (i) $-x, y, \frac{1}{2}-z$.				
Table 3. Hydrogen-bonding geometry (\AA, ${ }^{\circ}$)				
D-H..A	D-H	H \ldots A	D...	D-H \cdots A
$\mathrm{N} 2-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {i }}$	0.76 (4)	2.22 (4)	2.965 (3)	167 (4)
$\mathrm{N} 2-\mathrm{H} 7 \ldots \mathrm{Ol}^{\text {I }}$	0.83 (3)	2.32 (4)	3.133 (3)	166 (3)
Symmetry codes: (i) $x, 1-y, \frac{1}{2}+z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.				

The Zn and I atoms were located from Patterson synthesis and the remaining non- H atoms were located from weighted Fourier syntheses. Anisotropic displacement parameters were refined for all non- H atoms. All H atoms were located from difference syntheses and allowed to refine freely with individual isotropic displacement parameters.

Data collection: CAD-4-PC (Enraf-Nonius, 1993). Cell refinement: CAD-4-PC. Data reduction: CADRED in CAD-4$P C$. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: JZ1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Chen, X.-M. \& Mak, T. C. W. (1991). Inorg. Chim. Acla, 182, 139144.

Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Templeton, D. H. \& Templeton, L. K. (1978). AGNOSTIC. Program for Absorption Correction. University of California, Berkeley, CA, USA.
Zeleňák, V., Györyová, K. \& Císařová, I. (1995). Main Group Met. Chem. 18, 211-216.
Zeleňák, V., Györyová, K., Císařová, I. \& Loub, J. (1996). Acta Cryst. C52, 808-810.

Acta Cryst. (1996). C52, 1919-1921

trans-2,2,4,4-Tetrafluoro-1,3-diphenyl-1,3-diphosphetanediyl-1,3-bis[pentacarbonylchromium(0)]

Peter G. Jones
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: p.jones@tu-bs.de

(Received 25 March 1996; accepted 11 April 1996)

Abstract

The title compound, $\left[\mathrm{Cr}_{2}(\mathrm{CO})_{10}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{P}_{2}\right)\right]$, displays inversion symmetry. The $\mathrm{P}-\mathrm{CF}_{2}$ bond is somewhat lengthened on complexation and the phenyl-diphosphetane interplanar angle reduced from $89.15(6)^{\circ}$ in the free ligand to $61.4(1)^{\circ}$ in the complex. The $\mathrm{P}-\mathrm{Cr}$ bond is short [2.3149 (6) A].

\section*{Comment}

We recently reported the preparation and structure of trans-2,2,4,4-tetrafluoro-1,3-diphenyl-1,3-diphosphetane (Fild, Jones, Ruhnau \& Thöne, 1994). Here we extend our studies to the structure of its 1,3-bis[pentacarbonylchromium(0)] complex, (I). (I)

The title complex crystallizes with inversion symmetry (as does the free ligand) and the central fourmembered diphosphetane ring is thus exactly planar (Fig. 1). The $\mathrm{P}-\mathrm{CF}_{2}$ bond is significantly lengthened on complexation, with values of 1.9089 (14) and 1.9065 (13) \AA [1.8932 and 1.8886 (14) \AA for the free ligand, hereafter in square brackets]. In previous papers, we suggested that $\mathrm{P}-\mathrm{C}_{\text {halide }}$ bonds are systematically lengthened with respect to non-halogenated systems (Jones \& Bembenek, 1996, and references therein), but here the long bonds may at least in part be attributed to the diphosphetane ring system, for which a search of the Cambridge Structural Database (Allen \& Kennard, 1993) gave a mean P-C bond length of $1.881 \AA$ (sample e.s.d. $0.017 \AA$ for 29 values).

Other bond lengths and angles in the diphosphetane ring are scarcely altered on complexation; $\mathrm{P}-\mathrm{C}_{\mathrm{Ph}}$ $1.8146(14) \AA[1.8161(14) \AA], \mathrm{P}-\mathrm{CF}_{2}-\mathrm{P} 97.43(6)^{\circ}$ [98.20(6) ${ }^{\circ}$] and $\mathrm{CF}_{2}-\mathrm{P}-\mathrm{CF}_{2} 82.57(6)^{\circ}\left[81.80(6)^{\circ}\right.$]. The conformation, however, shows a major difference,

