For both compounds, data collection: *EXPOSE* (Stoe & Cie, 1993); cell refinement: *CELL* (Stoe & Cie, 1993); data reduction: *CONVERT* (Stoe & Cie, 1993); program(s) used to solve structures: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structures: *SHELXL93*; molecular graphics: *ORTEPII* (Johnson, 1976) in *NRCVAX* (Larson *et al.*, 1986); software used to prepare material for publication: *SHELXL93*.

The authors thank Mr Latal for synthesis of the ligand and Professor W. Koppenol for helpful discussion.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry, distances from the metal centre to the ligand planes and angles between the ligand planes have been deposited with the IUCr (Reference: SK1022). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Battaglia, L. P., Corradi, A. B., Nardelli, M. & Tani, M. E. V. (1976). J. Chem. Soc. Dalton Trans. pp. 143–146.
- Bonamartini, A. C., Gasparri, G. F., Belicchi, M. F. & Nardelli, M. (1987). Acta Cryst. C43, 407-413.
- Bowmaker, G. A., Pakawatchai, C., Skelton, B. W., Thavornyutikarn, P., Wattanakanjana, Y. & White, A. H. (1994). Aust. J. Chem. 47, 15-24.
- Constable, E. C. & Raithby, P. R. (1987). J. Chem. Soc. Dalton Trans. pp. 2281–2283.
- Geier, G., Giusti, G. & Kleemann, M. (1995). Unpublished results.
- Geier, G., Primo, L. & Mordasini, T. (1995). Unpublished results.
- Gutbier, R. (1900). Ber. Dtsch Chem. Ges. 33, 3359.
- Hunt, G. W., Terry, N. W. III & Amma, E. L. (1979). Acta Cryst. B35, 1235–1236.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jones, R. A. & Katritzky, A. R. (1958). J. Chem. Soc. pp. 3610-3613. Kokkou, S. C., Fortier, S., Rentzeperis, P. J. & Karagiannidis, P.
- (1983). Acta Cryst. C39, 178-180. Kokkou, S. C., Schramm, S. & Karagiannidis, P. (1985). Acta Cryst. C41, 1040-1043.
- Larson, A. C., Lee, F. L., Le Page, Y., Webster, M., Charland, J.-P. & Gabe, E. J. (1986). NRCVAX. Crystal Structure System with Interactive Version of ORTEPII. NRC, Ottawa, Canada.
- Okaya, Y. & Knobler, C. B. (1964). Acta Cryst. 17, 928-930.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1993). Scanner Stoe IPDS Diffractometer Software. Version 1.08. Stoe & Cie, Darmstadt, Germany.
- Truter, M. R. & Rutherford, K. W. (1962). J. Chem. Soc. pp. 1748– 1756.
- Udupa, M. R. & Krebs, B. (1973). Inorg. Chim. Acta, 7, 271-276.
- Weininger, M. S., Hunt, G. W. & Amma, E. L. (1972). J. Chem. Soc. Chem. Commun. pp. 1140–1141.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1917-1919

Diiodobis(nicotinamide-N¹-acetate-O)zinc(II)

Vladimír Zeleňák, ^a Katarína Györyová, ^a Ivana Císařová ^b and Josef Loub^b

^aDepartment of Inorganic Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia, and ^bDepartment of Inorganic Chemistry, Charles University, Hlavova 2030, Praha 2, Czech Republic. E-mail: zelenak@kosice.upjs.sk

(Received 22 February 1996; accepted 28 March 1996)

Abstract

In the title compound, $[ZnI_2(C_8H_8N_2O_3)_2]$, the Zn atom, which lies on a twofold axis, exists in a slightly distorted tetrahedral geometry involving two zwitterionic nicotinamide- N^1 -acetate substituents $[Zn-O1 \ 2.008 \ (2) \ Å]$ and two iodide ligands $[Zn-I \ 2.5848 \ (3) \ Å]$. Molecules of the complex are connected by intermolecular N-H···O hydrogen bonds, with N···O distances of 2.965 (3) and 3.133 (3) Å.

Comment

As part of a long-term project involving structural, spectroscopic, thermal and biological activity studies of zinc(II) carboxylates with bioactive N-donor ligands, we have been interested in the product of the reaction between zinc(II) iodoacetate and nicotinamide, *i.e.* diiodobis(nicotinamide- N^1 -acetate)zinc(II), (I). We have previously reported the mechanism of the reaction (Zeleňák, Györyová & Císařová, 1995).

The crystal structure of (I) consists of discrete monomeric units (Fig. 1) with the four-coordinate Zn atom lying on the crystallographic twofold axis. The distorted coordination tetrahedron is formed by two I atoms and two O atoms from the zwitterionic nicotinamide- N^1 acetate ligands. The complexes are linked by intermolecular N—H···O hydrogen bonds (Table 3), causing the two N—H distances to be different.

The zwitterionic nicotinamide- N^{l} -acetate ligands are unidentate with the carboxylate O1 atom bonded to Zn

Fig. 1. View of [ZnI₂(CONH₂C₅H₄N⁺CH₂COO⁻)₂]. Displacement ellipsoids are plotted at the 50% probability level.

[Zn-O1 2.008 (2) Å] and the carboxylate O2 atom involved in only a weak interaction $[Zn \cdot \cdot O2 2.878 (2) Å]$. The C1—O1 distance is slightly longer than the C1—O2 distance because of the greater double-bond character in the latter. The N1-C2 bond is synperiplanar to the C1-O1 bond and antiperiplanar to the C1-O2 bond [N1-C2-C1-O1 and N1-C2-C1-O2 are 5.3 (3) and $-176.9(2)^\circ$, respectively].

The Zn-O1 bond length is similar to that found in the analogous bromine complex, [ZnBr2(CONH2-C₅H₄N⁺CH₂COO⁻)₂] [2.005 (2) Å; Zeleňák, Györyová & Císařová, 1995), shorter than that found in [ZnCl₂- $(CONH_2C_5H_4N^+CH_2COO^-)_2$ [2.014 (1) Å; Zeleňák, Györyová, Císařová & Loub, 1996) and longer than those found in another complex with a zwitterionic carboxylate ligand, namely, dichlorobis(pyridine betaine)zinc(II) [1.988(3) and 1.964(2) Å: Chen & Mak. 19911.

In the series of complexes of the type $[ZnX_2(CONH_2)]$ $C_5H_4N^+CH_2COO^-)_2$, where X = Cl (Zeleňák, Györyová, Císařová & Loub, 1996), Br (Zeleňák, Györvová & Císařová, 1995) and I (the title compound), the Zn-X bond distance increases from Cl to I [2.245(1)] for Cl, 2.381 (1) for Br and 2.5848 (3) Å for I], which is in good agreement with the increase in the covalent radius of the halogen atom. Comparison of the X—Zn—X' and O1-Zn-O1' angles shows two trends. Whereas the X—Zn—X' angles decrease with an increase in the covalent radius of the halogen ligand [107.52(3) for Cl, 105.9(1) for Br and $104.29(2)^{\circ}$ for I], the O1-Zn-O1' angles show the contrary trend [106.44(8) for Cl, 107.8(1) for Br and 109.24(9)° for I].

Experimental

The synthesis of the title compound was carried out by reaction of zinc(II) iodoacetate and nicotinamide (molar ratio 1:2) in water at 313 K. The reaction mixture was filtered and then allowed to evaporate slowly at room temperature. After several days, pale yellow crystals were isolated.

Crystal data

$[\text{ZnI}_2(\text{C}_8\text{H}_8\text{N}_2\text{O}_3)_2]$ $M_r = 679.50$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å	I—Zn Zn—O1 O1—C1	2.5848 (3) 2.008 (2) 1.276 (3)
--	---	------------------------	--------------------------------------

Monoclinic C2/ca = 14.0585(9) Å b = 7.6504(4) Å c = 18.6550(10) Å $\beta = 93.599(6)^{\circ}$ V = 2002.4 (2) Å³ Z = 4 $D_x = 2.254 \text{ Mg m}^{-3}$ D_m not measured

Data collection

CAD-4-MACHIII-PC diffractometer ω -2 θ scans Absorption correction: analytical (AGNOSTIC: Templeton & Templeton, 1978) $T_{\min} = 0.210, T_{\max} =$ 0.314 4190 measured reflections 2179 independent reflections

Refinement

w

Zn

01

02

NI CI C2 C3

C4 C8 C6

C5

C7

03

N2

Refinement on
$$F^2$$
 $\Delta \rho_{max} = 0.630 \text{ e} \text{ Å}^{-3}$ $R(F) = 0.0208$ $\Delta \rho_{min} = -0.851 \text{ e} \text{ Å}^{-3}$ $wR(F^2) = 0.0537$ Extinction correction: $S = 1.113$ $SHELXL93$ (Sheldrick,2179 reflections1993)165 parametersExtinction coefficient:All H-atom parameters $0.0053 (2)$ $w = 1/[\sigma^2(F_o^2) + (0.0269P)^2$ Atomic scattering factors $w = 1/[\sigma^2(F_o^2) + (0.0269P)^2$ from International Tables $\phi refined$ $(\Delta/\sigma)_{max} = 0.001$ $(\Delta/\sigma)_{max} = 0.001$ $6.1.1.4$

Cell parameters from 25

 $0.46 \times 0.38 \times 0.35$ mm

2089 observed reflections

 $[I > 4\sigma(I)]$

 $R_{\rm int} = 0.0257$

 $\theta_{\rm max} = 26.97^{\circ}$

 $k = 0 \rightarrow 9$

 $h = -17 \rightarrow 17$

 $l = -23 \rightarrow 23$

3 standard reflections

frequency: 60 min

intensity decay: 1%

reflections $\theta = 18 - 19^{\circ}$

 $\mu = 4.352 \text{ mm}^{-1}$

T = 293 (2) K

Hexagon

Pale yellow

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	z	U_{eq}
0.110842 (11)	0.02424 (2)	0.184401 (8)	0.03125 (9)
0	0.23157 (5)	1/4	0.02342 (11)
0.07358 (12)	0.3835 (2)	0.32160 (9)	0.0269 (3)
0.1140(2)	0.5363 (3)	0.22642 (10)	0.0386(4)
0.12293 (14)	0.6505 (2)	0.41525 (10)	0.0239 (4)
0.1048 (2)	0.5192 (3)	0.29097 (13)	0.0236 (4)
0.1299 (2)	0.6788 (3)	0.33743 (12)	0.0277 (5)
0.1904 (2)	0.5543 (3)	0.45152 (12)	0.0229 (4)
0.1876 (2)	0.5271 (3)	0.52449 (12)	0.0224 (4)
0.2694 (2)	0.4224 (3)	0.55921 (13)	0.0264 (4)
0.0452 (2)	0.7006 (3)	0.52204 (13)	0.0307 (5)
0.1136(2)	0.6005 (3)	0.56022(12)	0.0263 (5)
0.0514(2)	0.7234 (3)	0.44947 (14)	0.0290 (5)
0.33721 (13)	0.3877 (3)	0.52403 (11)	0.0436 (5)
0.2631 (2)	0.3747 (3)	0.62698 (12)	0.0364 (5)

Table 2. Selected geometric parameters (Å, °)

Zn	2.5848 (3)	C3C4	1.380 (3)
01	2.008 (2)	C4—C5	1.389 (3)
C1	1.276 (3)	C4C8	1.514 (3)

02—C1 N1—C7 N1—C3 N1—C2 C1—C2	1.226 (3) 1.346 (3) 1.348 (3) 1.477 (3) 1.526 (3)	C8—O3 C8—N2 C6—C7 C6—C5	1.220 (3) 1.324 (3) 1.373 (4) 1.390 (3)
$\begin{array}{c} 01 - Zn - 01^{i} \\ 01 - Zn - 1 \\ 01 - Zn - 1^{i} \\ 1 - Zn - 1^{i} \\ 1 - Zn - 1^{i} \\ 01 - Zn - $	109.24 (9) 111.68 (5) 109.94 (5) 104.29 (2) 110.52 (14) 120.7 (2) 120.2 (2) 119.0 (2) 125.9 (2) 115.9 (2) 118.1 (2)	$\begin{array}{c} N1 - C2 - C1 \\ N1 - C3 - C4 \\ C3 - C4 - C5 \\ C3 - C4 - C8 \\ C5 - C4 - C8 \\ 03 - C8 - N2 \\ 03 - C8 - N2 \\ 03 - C8 - C4 \\ N2 - C8 - C4 \\ N2 - C8 - C4 \\ C7 - C6 - C5 \\ C4 - C5 - C6 \\ N1 - C7 - C6 \\ \end{array}$	114.4 (2) 121.0 (2) 118.7 (2) 115.7 (2) 125.5 (2) 123.7 (2) 118.9 (2) 117.4 (2) 119.3 (2) 119.5 (2) 120.7 (2)
• • •			

Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

Table 3 Hydrogen-bonding geometry (A	A . '	°)
--------------------------------------	--------------	----

$D - H \cdots A$ N2 - H8 · · · O2 ⁱ	<i>D</i> —Н 0.76 (4)	H···A 2.22 (4)	$D \cdots A$ 2.965 (3)	DH· · · A 167 (4)
$N2 - H7 \cdot \cdot \cdot O1^{ii}$	0.83 (3)	2.32 (4)	3.133 (3)	166 (3)
Symmetry codes: (i	$x, 1-y, \frac{1}{2} +$	$z;$ (ii) $\frac{1}{2}$	$x, \frac{1}{2} - y, 1 - $	z.

The Zn and I atoms were located from Patterson synthesis and the remaining non-H atoms were located from weighted Fourier syntheses. Anisotropic displacement parameters were refined for all non-H atoms. All H atoms were located from difference syntheses and allowed to refine freely with individual isotropic displacement parameters.

Data collection: CAD-4-PC (Enraf-Nonius, 1993). Cell refinement: CAD-4-PC. Data reduction: CADRED in CAD-4-PC. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: JZ1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chen, X.-M. & Mak, T. C. W. (1991). Inorg. Chim. Acta, 182, 139-144.
- Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Templeton, D. H. & Templeton, L. K. (1978). AGNOSTIC. Program for Absorption Correction. University of California, Berkeley, CA, USA.
- Zeleňák, V., Györyová, K. & Císařová, I. (1995). Main Group Met. Chem. 18, 211-216.
- Zeleňák, V., Györyová, K., Císařová, I. & Loub, J. (1996). Acta Cryst. C52, 808-810.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 1919-1921

trans-2,2,4,4-Tetrafluoro-1,3-diphenyl-1,3diphosphetanediyl-1,3-bis[pentacarbonylchromium(0)]

PETER G. JONES

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: p.jones@tu-bs.de

(Received 25 March 1996; accepted 11 April 1996)

Abstract

The title compound, $[Cr_2(CO)_{10}(C_{14}H_{10}F_4P_2)]$, displays inversion symmetry. The P—CF₂ bond is somewhat lengthened on complexation and the phenyl–diphosphetane interplanar angle reduced from 89.15 (6)° in the free ligand to 61.4 (1)° in the complex. The P—Cr bond is short [2.3149 (6) Å].

Comment

We recently reported the preparation and structure of *trans*-2,2,4,4-tetrafluoro-1,3-diphenyl-1,3-diphosphetane (Fild, Jones, Ruhnau & Thöne, 1994). Here we extend our studies to the structure of its 1,3-bis[pentacarbonyl-chromium(0)] complex, (I).

The title complex crystallizes with inversion symmetry (as does the free ligand) and the central fourmembered diphosphetane ring is thus exactly planar (Fig. 1). The P—CF₂ bond is significantly lengthened on complexation, with values of 1.9089 (14) and 1.9065 (13) Å [1.8932 and 1.8886 (14) Å for the free ligand, hereafter in square brackets]. In previous papers, we suggested that P—C_{halide} bonds are systematically lengthened with respect to non-halogenated systems (Jones & Bembenek, 1996, and references therein), but here the long bonds may at least in part be attributed to the diphosphetane ring system, for which a search of the Cambridge Structural Database (Allen & Kennard, 1993) gave a mean P—C bond length of 1.881 Å (sample e.s.d. 0.017 Å for 29 values).

Other bond lengths and angles in the diphosphetane ring are scarcely altered on complexation; P—C_{Ph} 1.8146 (14) Å [1.8161 (14) Å], P—CF₂—P 97.43 (6)° [98.20 (6)°] and CF₂—P—CF₂ 82.57 (6)° [81.80 (6)°]. The conformation, however, shows a major difference,